Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria.
نویسندگان
چکیده
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 approximately 3, where Q10 is the proportional change with a 10 degrees C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures.
منابع مشابه
Investigating the effect of Biodrof systems based on algae-bacterial biofilm for removing total Nitrogen, Phosphorus from domestic wastewater
Due to an increase of the human population on Earth, log of pollutants to water resources has increased and this caused the more restriction of water resources for human. Limited availability of fresh water resources, especially in the Middle East that have arid and semi-arid climate increases the importance of water recycling. The main problem in many conventional wastewater treatment systems ...
متن کاملThe relationship between the characteristics of Biochar produced at different temperatures and its impact on the uptake of NO3--N
Background: Nitrogen leaching from agricultural lands is a major threat to groundwater and surface waters. This study investigated the relationship between the characteristics of wheat-straw biochar produced at different temperatures and its impact on the uptake of NO3--N. Methods: Three types of biochar were produced from wheat straw at three different pyrolysis temperatures of 300, 400 and 5...
متن کاملGibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures
Suboptimal temperature stress often causes heavy yield losses of vegetables by suppressing plant growth during winter and early spring. Gibberellin acid (GA) has been reported to be involved in plant growth and acquisition of mineral nutrients. However, no studies have evaluated the role of GA in the regulation of growth and nutrient acquisition by vegetables under conditions of suboptimal temp...
متن کاملAtomic structure of a nitrate-binding protein crucial for photosynthetic productivity.
Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean. It is therefore not surprising that NrtA, the s...
متن کاملCoral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH
The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO(2) on phosphate, ammonium, and nitr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 65 6 شماره
صفحات -
تاریخ انتشار 1999